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Abstract
In this paper, we consider the baseball card collector’s problem.

We find a closed-form expression for the probability of getting 2 com-
plete sets of n cards taken 1 at a time with replacement after t selec-
tions. This can be found by examining the t-th power of a transition
matrix A. We use the Jordan Normal Form of this transition matrix
to compute this probability more easily.

1 Introduction

1.1 Baseball Card Collector’s Problem

The combinatorial problem we will be considering in this paper is the
baseball card collector’s problem, which is given as follows: suppose
there exists a set of n different baseball cards, the collector wants to
collect c complete sets of them, and the collector can obtain p unique
cards in a “pack”at a time, with replacement. The first selection of
a “pack”has time t = 1. The second selection has time t = 2 and so
on. We want to find the probability of acquiring c complete sets after
time t.

We define a state as an ordered tuple (a1, . . . , ac) which represents
that a collector has collected exactly one copy of a1 cards, exactly
two copies of a2 cards, and so on, with c copies or more of ac cards.
Clearly for each state we must have a1 + a2 + · · ·+ ac ≤ n.

Given that constraint, we will order the states as follows: let X0 =
(0, 0, ...0). Now, if Xi = (a1, . . . ac), define Xi+1 as
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{
(a1 + 1, a2, a3, . . . ac) :

∑c
i=1 ai < n

(a1, . . . , 0, aj+1 + 1, . . . ac) :
∑c

i=1 ai = n
(1)

where j is the lowest i such that ai is nonzero. For example, the
ordering of states for n = 2, c = 3 is

((0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0), (1, 1, 0),
(0, 2, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 2))

We have
(
n+c
c

)
states in all, so we index them in this order from

0 to
(
n+c
c

)
− 1. Using these states, we can create a transition matrix

between states where the entries are the chance of moving from one
state to another after collecting a new pack of cards. The formula for
the probability of moving from state (a1, . . . , ac) to (b1, . . . , bc) is

(
n−

Pc
k=1 ak
y1

) (∏c−1
k=1

(
ak
yk+1

)) (
ac

p−
Pc

k=1 yk

)(
n
p

) (2)

where bc = ac + yc, bc−1 = ac−1 − yc + yc−1, etc. with b1 =
a1− y2 + y1. In other words, yk denotes the number of cards of which
a collector has k − 1 copies and gains one more of that card from the
collected pack. The first term in the numerator gives the number of
ways to get the first copy from the set cards of which the collector
previously had no copies. Each successive term gives the number of
ways to get another copy from the set of cards of which the collector
previously had k copies, and the last term gives the number of ways
to get more copies of cards of which a collector already has c copies.
Finally, the denominator gives the number of possible packs of cards,
making the formula a probability.

Thus, we can create a transition matrix An,c,p where each entry
aij is given by the formula above, with (a1, . . . , ac) being state i and
(b1, . . . , bc) being state j in our ordering. For example, A3,2,2 is
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(0, 0) (1, 0) (2, 0) (3, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (0, 3)
(0, 0) 0 0 1 0 0 0 0 0 0 0
(1, 0) 0 0 0 1/3 0 2/3 0 0 0 0
(2, 0) 0 0 0 0 0 0 2/3 1/3 0 0
(3, 0) 0 0 0 0 0 0 0 0 1 0
(0, 1) 0 0 0 0 0 2/3 1/3 0 0 0
(1, 1) 0 0 0 0 0 0 1/3 1/3 1/3 0
(2, 1) 0 0 0 0 0 0 0 0 2/3 1/3
(0, 2) 0 0 0 0 0 0 0 1/3 2/3 0
(1, 2) 0 0 0 0 0 0 0 0 1/3 2/3
(0, 3) 0 0 0 0 0 0 0 0 0 1

Note that for
(
n
p

)
> 1, An,c,p transition matrices will have non-

integer entries. To eliminate the complications of fractions, whenever
we discuss An,c,p we will refer to

(
n
p

)
·An,c,p to make its entries integers.

Proposition 1. The transition matrix An,c,p is upper triangular.

Proof. Let Xi = (a1, . . . ac) and Xj = (b1, . . . bc) be two states in
An,c,p, with j < i. Notice that as the indices of states increases by (1),
for the greatest k such that ak is nonzero, ak never decreases; it either
increases or stays the same. Compare Xi and Xj to find the largest k
such that ak 6= bk. Since j < i, we must have ak > bk. Consider the
transition from Xi to Xj . Transitioning between these states would
then imply that the number of cards of which the collector has k copies
decreases, but as al = bl for l > k, the number of cards of which the
collector has more than k copies does not increase, a contradiction.
Thus it is impossible for this transition to occur, making its probability
0.

So for any j < i, the entry in the ith row and jth column of An,c,p
is 0, implying that An,c,p is upper triangular.

1.2 Previous Results

The case of c = 1 has already been explored by Calkin and Edds.
They considered the transition matrix An,1,p. To find the proba-
bility of having one complete set after time t they had to consider
the probability of getting from state (0) to state (n) in (An,1,p)t.
They used its Jordan Normal Form to compute this probability since
(An,1,p)t = Pn,1,p · (Jn,1,p)t · (Pn,1,p)−1. They found that An,1,p is an
n×n matrix with n linearly independent eigenvectors making its Jor-
dan Normal Form a diagonal matrix which simplified things. By com-
puting Pn,1,p · (Jn,1,p)t · (Pn,1,p)−1 they were able to get the following
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expression for the probability of collecting one complete set of n cards
taken p at a time after time t:

n∑
i=0

(
n

i

)((n−i
p

)(
n
p

) )t (−1)i

[?]
We will employ the same method to find the probability of getting

two complete sets of n cards taken 1 at a time after time t.

2 Method to Find P

We first must to be able to find the Jordanizing Matrix P for a matrix
A that satisfies A = P · J · P−1 where J is the Jordan Normal Form
of A.

Given a square matrix A, we can find its Jordan Normal Form J .
For each eigenspace in J , on each block, we can find eigenvectors of A
by solving the following system for v:

(A− λI)v = 0.

We then find generalized eigenvectors up to the block size b by solving
(A − λI)vi+1 = vi with 1 ≤ i ≤ b − 1 and (A − λI)v1 = v where v is
our original eigenvector corresponding to λ.

We can now construct P from these vectors (each vector being a
column of P ). These columns are given in terms of parameters.

3 An,2,1

We now consider a subset of the transition matrices An,c,p. We will
be looking at the Jordanizing of An,2,1. First we must re-index our
matrix making it easier to define the entries of the matrices in which
we are interested.

3.1 Re-indexing our Matrices

Each An,2,1 has size N = (n+1)(n+2)
2 (i.e. a triangular number). Due

to this fact and the behavior of our n, 2, 1 matrices, it is more helpful
(for the purpose of defining the entries of the matrix) to index An,2,1,
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Pn,2,1, (Pn,2,1)−1, and Jn,2,1 in the following way:

We first index the row position of the entry. Starting with x =
0 counting from the bottom, x will represent which horizonal block
contains the entry. So x = 0 will be the bottom horizontal block, and
x = n is the top horizontal block. Each x consists of x + 1 rows. So
we must have a second index that denotes the rows in each horizontal
block x. Within each x, i will denote which row of x the entry is in.
The bottom row of horizontal block x will be marked i = 0, and the
top row of horizontal block x will be marked i = x.

Similarly, we index the column position of the entry. Starting with
y = 0 counting from the right-hand side, y will denote which vertical
block the entry is in. So y = 0 is the right-most vertical block, and
y = n is the left-most vertical block. Each y consists of y+1 columns.
We must have a second index which denotes the columns in each
vertical block y. Within each y, j will denote which column of y the
entry is in. The right-most column of vertical block y is marked j = 0,
and the left-most column of vertical block y will be marked j = y.

We now have 4 indices counting from the bottom right of our
matrix rather than 2 indices counting from the top left. So each entry
must be denoted ax,i,y,j . For example take n = 2:

A2,2,1 =



a2,2,2,2 a2,2,2,1 a2,2,2,0 a2,2,1,1 a2,2,1,0 a2,2,0,0

a2,1,2,2 a2,1,2,1 a2,1,2,0 a2,1,1,1 a2,1,1,0 a2,1,0,0

a2,0,2,2 a2,0,2,1 a2,0,2,0 a2,0,1,1 a2,0,1,0 a2,0,0,0

a1,1,2,2 a1,1,2,1 a1,1,2,0 a1,1,1,1 a1,1,1,0 a1,1,0,0

a1,0,2,2 a1,0,2,1 a1,0,2,0 a1,0,1,1 a1,0,1,0 a1,0,0,0

a0,0,2,2 a0,0,2,1 a0,0,2,0 a0,0,1,1 a0,0,1,0 a0,0,0,0


Given an entry ax,i,y,j in An,2,1, we can find its traditional indexing
(i.e. ap,q, beginning our counting at 0):

p =
(
n+ 2

2

)
− 1− i−

(
x+ 1

2

)
q =

(
n+ 2

2

)
− 1− j −

(
y + 1

2

)

By looking at the Jordan Normal Form Jn,2,1 of the integral An,2,1
this new indexing arises naturally.
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Proposition 2. Each eigenvalue λ is in a single Jordan block of size
n+ 1− λ. So Jn,2,1 will look like:

0 1
. . . . . .

. . . . . .
. . . 1

0
1 1

. . . . . .
. . . . . .

. . . 1
1

. . .
. . .

n− 1 1
n− 1

n


The proof of this proposition comes for free with the proof of The-

orem 1 that appears later in the paper.

This behavior of the blocks of Jn,2,1 is motivation for this new sys-
tem of “block indexing”because we can divide the matrix into horizon-
tal blocks labelled x and vertical blocks labelled y, and when x = y,
their intersection contains a Jordan block in Jn,2,1.

3.2 Probabilities for An,2,1

Using the indexing as discussed above, we can derive formulas for
An,2,1, Jn,2,1, Pn,2,1, and Qn,2,1 = (Pn,2,1)−1. These formulas will
allow us to find the probability of collecting two complete sets of n
cards taken 1 at a time after time t. We can apply our formula for
the entries of a transition matrix to find the values in An,2,1.

Lemma 1. The entries of An,2,1 in terms of these new indices are
given by:
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An,2,1 =
(
ax,i,y,j

)

ax,i,y,j =
(

i

i− j

)(
x− i
x− y

)(
n− x

1− (i− j)− (x− y)

)

Proof. In An,2,1 each entry corresponds to the probability of moving
from a state (a1, a2) to a state (b1, b2) multiplied by n.

For An,2,1 the probability of (a1, a2)→ (b1, b2) is given by equation
2 as

(
n−(a1+a2)

y1

)(
a1

y2

)(
a2

1−(y1)−(y2)

)
n

Using the indices x,i,y,and j, the entry ax,i,y,j corresponds to the
probability of moving from state (x− i, n− x) to state (y − j, n− y)
multiplied by n. Therefore we get y1 = i− j and y2 = x− y. So, the
entries of An,2,1 are given by

ax,i,y,j =
(
n− (x− i+ n− x)

i− j

)(
x− i
x− y

)(
n− x

1− (i− j)− (x− y)

)

Theorem 1. The entries of Jn,2,1 in terms of these new indices are
given by:

Jn,2,1 =
(
ex,i,y,j

)

ex,i,y,j =
(
x− y
y − x

)(
1

i− j

)(
n− x

1− (i− j)

)

The entries of the Jordanizing matrix Pn,2,1 in terms of these new
indices are given by:

Pn,2,1 =
(
px,i,y,j

)
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px,i,y,j = (j!)
(
x− j
y − j

)(
i

j

)

The entries of Qn,2,1 = (Pn,2,1)−1 in terms of these new indices
are given by:

Qn,2,1 =
(
qx,i,y,j

)

qx,i,y,j =
(−1)i+j+x+y

(
x−i
x−y
)(
i
j

)
(i)!

These formulas give us

An,2,1 = Pn,2,1 · Jn,2,1 ·Qn,2,1

Proof. It will suffice to show:

• Jn,2,1 is a block diagonal matrix made up of Jordan Blocks

• An,2,1 · Pn,2,1 = Pn,2,1 · Jn,2,1

• Pn,2,1 ·Qn,2,1 = I

Our formula for each entry ex,i,y,j of Jn,2,1 is

(
x− y
y − x

)(
1

i− j

)(
n− x

1− (i− j)

)

The term
(
x−y
y−x
)

in our formula is there to ensure that only when
our horizontal and vertical block indices x and y (respectively) are
equal do we have non-zero entries. Otherwise, if x 6= y, then either
x− y or y − x is negative making

(
x−y
y−x
)

= 0.
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The term
(

1
i−j
)

is there to make it so only when 0 ≤ i− j ≤ 1 do
we have non-zero entries. Otherwise, i − j < 0 or 1 < i − j making(

1
i−j
)

= 0.
The term

(
n−x

1−(i−j)
)

is what gives Jn,2,1 the eigenvalues along the
main diagonal. We know that x = y, and either i− j = 0 or i− j = 1
must hold in order to have non-zero entries. So only on the main and
super diagonals of blocks where x = y, do we have non-zero entries.
This makes Jn,2,1 a block diagonal matrix. When x = y and i− j = 1,
the entry is on the super diagonal of that block, and the formula gives
us ex,i,y,j = 1, following the description of a Jordan Normal Form.

So we have a block diagonal matrix with entries along the main
diagonal of each block, and 1’s along the super diagonal of each block
making it a Jordan Normal Form.

Showing that An,2,1 = Pn,2,1 · Jn,2,1 ·Qn,2,1 and (Pn,2,1)−1 = Qn,2,1
will show that our formula for Jn,2,1 gives us the Jordan Normal Form
of An,2,1 since the Jordan Normal Form of a matrix is unique up to
block rearrangement.

An,2,1 · Pn,2,1 = Pn,2,1 · Jn,2,1 and Pn,2,1 ·Qn,2,1 = I is equivalent to
An,2,1 = Pn,2,1 · Jn,2,1 ·Qn,2,1.

We will now show that An,2,1 · Pn,2,1 = Pn,2,1 · Jn,2,1.

Using the new indices, matrix multiplication will look like:

An,2,1 · Pn,2,1 =
(
cx,i,y,j

)
cx,i,y,j =

n∑
z=0

z∑
k=0

ax,i,z,k · pz,k,y,j

And

Pn,2,1 · Jn,2,1 =
(
dx,i,y,j

)
dx,i,y,j =

n∑
z=0

z∑
k=0

px,i,z,k · ez,k,y,j
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Now we can use our formulas for our matrices to see what these
double-sums look like.

cx,i,y,j =
n∑
z=0

z∑
k=0

(
i

i− k

)(
x− i
x− z

)(
n− x

1− (i− k)− (x− z)

)
(j!)
(
z − j
y − j

)(
k

j

)

dx,i,y,j =
n∑
z=0

z∑
k=0

(k!)
(
x− k
z − k

)(
i

k

)(
z − y
y − z

)(
1

k − j

)(
n− z

1− (k − j)

)

The way
(
α
β

)
is defined, if α < 0, β < 0, or α < β,

(
α
β

)
= 0. Using

this fact, we can find some constraints on z and k in both these double
sums.

Take the sum representing cx,i,y,j , the entry
(
i

i−k
)

shows that k ≤ i
otherwise i − k < 0 making

(
i

i−k
)

= 0 therefore, any term with k > i

does not affect the double-sum. Now look at the entry
(
x−i
x−z
)
. This

makes z ≤ x since if it were otherwise, x − z < 0 making
(
x−i
x−z
)

= 0.
So any term with z > x does not affect the double-sum.

With these two constraints in mind, consider the entry
(

n−x
1−(i−k)−(x−z)

)
.

We know k ≤ i and z ≤ x, therefore i − k ≥ 0 and x − z ≥ 0.
So the only possible non-zero values of

(
n−x

1−(i−k)−(x−z)
)

can be when
1 − (i − k) − (x − z) = 0 or 1 due to our constraints on z and k. So
either both (i − k) and (x − z) are 0, or only one of them equals 1
and the other is 0. So there are only three pairs of values for z and k
that give a non-zero term in our double-sum. The pairs are: z = x,
k = i− 1; z = x, k = i; and z = x− 1, k = i.

So we have:

cx,i,y,j =
n∑
z=0

z∑
k=0

(
i

i− k

)(
x− i
x− z

)(
n− x

1− (i− k)− (x− z)

)
(j!)
(
z − j
y − j

)(
k

j

)

=
(
i

1

)
(j!)
(
x− j
y − j

)(
i− 1
j

)
+
(
n− x

1

)
(j!)
(
x− j
y − j

)(
i

j

)
+
(
x− i

1

)
(j!)
(
x− 1− j
y − j

)(
i

j

)
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= (i)(j!)
(
x− j
y − j

)(
i− 1
j

)
+(n−x)(j!)

(
x− j
y − j

)(
i

j

)
+(x−i)(j!)

(
x− 1− j
y − j

)(
i

j

)

We now focus on finding constraints for:

dx,i,y,j =
n∑
z=0

z∑
k=0

(k!)
(
x− k
z − k

)(
i

k

)(
z − y
y − z

)(
1

k − j

)(
n− z

1− (k − j)

)

Consider the entry
(
z−y
y−z
)
. If z 6= y,

(
z−y
y−z
)

= 0. So the only non-zero
terms in this double-sum occur when y = z. Moreover, consider the
entry

(
1
k−j
)
. In order for the term to be non-zero, k − j must either

be 1 or 0. So k = j or k = j + 1.
So we have:

dx,i,y,j =
n∑
z=0

z∑
k=0

(k!)
(
x− k
z − k

)(
i

k

)(
z − y
y − z

)(
1

k − j

)(
n− z

1− (k − j)

)

= (j!)
(
x− j
z − k

)(
i

j

)(
0
0

)(
1
0

)(
n− y

1

)
+(j+1)!

(
x− j − 1
y − j − 1

)(
i

j + 1

)(
0
0

)(
1
1

)(
n− z

0

)

= (j!)
(
x− j
y − j

)(
i

j

)
(n− y) + (j + 1)!

(
x− j − 1
y − j − 1

)(
i

j + 1

)

We can now show that these new constrained expressions are equal.
First we simplify cx,i,y,j .

cx,i,y,j = (i)(j!)
(
x− j
y − j

)(
i− 1
j

)
+ (n− x)(j!)

(
x− j
y − j

)(
i

j

)

+(x− i)(j!)
(
x− 1− j
y − j

)(
i

j

)
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=
(i)(j!)(x− j)!(i− 1)!

(y − j)!(x− y)!(j!)(i− j − 1)!
+

(n− x)(j!)(x− j)!(i!)
(y − j)!(x− y)!(j!)(i− j)!

+
(x− i)(j!)(x− j − 1)!(i!)

(y − j)!(x− y − 1)!(j!)(i− j)!

=
(x− j)!(i!)

(y − j)!(x− y)!(i− j − 1)!
+

(n− x)(x− j)!(i!)
(y − j)!(x− y)!(i− j)!

+
(x− i)(x− j − 1)!(i!)

(y − j)!(x− y − 1)!(i− j)!

=
(x− j)!(i!)(i− j)

(y − j)!(x− y)!(i− j)!
+

(n− x)(x− j)!(i!)
(y − j)!(x− y)!(i− j)!

+
(x− i)(x− j − 1)!(i!)(x− y)

(y − j)!(x− y)!(i− j)!

=
(i!)(x− j − 1)! ((x− j)(i− j) + (n− x)(x− j) + (x− i)(x− y))

(y − j)!(x− y)!(i− j)!

=
(i!)(x− j − 1)!(xi− xj − ji+ j2 + nx− nj − x2 + xj + x2 − xy − xi+ yi)

(y − j)!(x− y)!(i− j)!

=
(i!)(x− j − 1)!(−ji+ j2 + nx− nj − xy + yi)

(y − j)!(x− y)!(i− j)!

Then we simplify dx,i,y,j .

dx,i,y,j = (j!)
(
x− j
y − j

)(
i

j

)
(n− y) + (j + 1)!

(
x− j − 1
y − j − 1

)(
i

j + 1

)

=
(j!)(x− j)!(i!)(n− y)

(y − j)!(x− y)!(j!)(i− j)!
+

(j + 1)!(x− j − 1)!(i!)
(y − j − 1)!(x− y)!(j + 1)!(i− j − 1)!

=
(x− j)!(i!)(n− y)

(y − j)!(x− y)!(i− j)!
+

(x− j − 1)!(i!)(y − j)(i− j)
(y − j)!(x− y)!(i− j)!
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=
(x− j − 1)!(i!) ((x− j)(n− y) + (y − j)(i− j))

(y − j)!(x− y)!(i− j)!

=
(x− j − 1)!(i!)(xn− xy − nj + jy + yi− yj − ij + j2)

(y − j)!(x− y)!(i− j)!

=
(i!)(x− j − 1)!(−ji+ j2 + nx− nj − xy + yi)

(y − j)!(x− y)!(i− j)!

So cx,i,y,j = dx,i,y,j . Implying An,2,1Pn,2,1 = Pn,2,1Jn,2,1.

Now we must show Pn,2,1 ·Qn,2,1 = I.

Let Pn,2,1 · Qn,2,1 = (rx,i,y,j). Following the matrix multiplication
for our system of indexing, we get

rx,i,y,j =
n∑
z=0

z∑
k=0

(k)!
(
x−k
z−k
)(
i
k

)
(−1)k+j+z+y

(
z−k
z−y
)(
k
j

)
(k)!

=
n∑
z=0

z∑
k=0

(
x− k
z − k

)(
i

k

)
(−1)k+j+z+y

(
z − k
z − y

)(
k

j

)
Notice that Pn,2,1 and Qn,2,1 are upper triangular making Pn,2,1 ·

Qn,2,1 upper triangular. So whenever x < y, rx,i,y,j = 0. Also, consider
the terms

(
i
k

)
and

(
k
j

)
in the double sum. These imply that k ≤ i

and j ≤ k respectively. Otherwise, rx,i,y,j = 0. Putting the two
inequalities together we get that j ≤ i must hold, otherwise we would
get rx,i,y,j = 0. From this deduction, we know that rx,i,y,j = 0 when
x < y or i < j. So we only need to consider cases where y ≤ x and
j ≤ i.

It will suffice to show that rx,i,y,j = 1 when x = y∧ i = j (an entry
on the main diagonal) and rx,i,y,j = 0 when x 6= y ∨ i 6= j (an entry
not on the main diagonal).

Let x = y ∧ i = j. By looking at the binomial coefficients just as
before we can see that y ≤ z ≤ x and j ≤ k ≤ i. Since x = y we
have y = z = x, and similarly we have i = j = k. We will now go
through the expression for rx,i,y,j and keep every x while replacing y
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and z with x, and we will also keep every i while replacing j and k
with i. Doing this we get

rx,i,y,j =
(
x− i
x− i

)
(−1)i+i+x+x

(
x− i
x− x

)(
i

i

)
= (1)(−1)2(i+x)(1)(1)

= 1

So whenever x = y ∧ i = j we get rx,i,y,j = 1.

Next we show that if x 6= y ∨ i 6= j then rx,i,y,j = 0. We will
separate this into three cases.

We will be taking advantage of the two following identities:

d∑
c=0

(−1)c
(
d

c

)
= 0

(
α

β

)(
β

γ

)
=
(
α

γ

)(
α− γ
β − γ

)
[?]

Case I: If x = y ∧ i 6= j then rx,i,y,j = 0

So as before we have x = y = z so we have no need for the sum
over z. We will just keep each x and replace each y and z with x, but
the rest of the expression still has i, k, and j in it. Maintaining that
j ≤ k ≤ i we get

rx,i,y,j =
i∑

k=j

(
x− k
x− k

)(
i

k

)
(−1)k+j+x+x

(
x− k
x− x

)(
k

j

)

=
i∑

k=j

(−1)k+j+2x

(
i

k

)(
k

j

)

=
i∑

k=j

(−1)k+j
(
i

j

)(
i− j
k − j

)
Note that (−1)k+j = (−1)k−j , so we get
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=
(
i

j

) i∑
k=j

(−1)k−j
(
i− j
k − j

)
We now let s = i− j and l = k − j and get

rx,i,y,j =
(
i

j

) s∑
l=0

(−1)l
(
s

l

)
= 0

Which confirms Case I.

Case II: If x 6= y ∧ i = j then rx,i,y,j = 0

Now we have i = j = k so we have no need for the sum over k.
We will just keep each i and replace each j and k with i, but the rest
of the expression will still have x, y, and z in it. So maintaining that
y ≤ z ≤ x we get

rx,i,y,j =
x∑
z=y

(
x− i
z − i

)(
i

i

)
(−1)i+i+z+y

(
z − i
z − y

)(
i

i

)

=
x∑
z=y

(−1)2i+z+y
(
x− i
z − i

)(
z − i
z − y

)

=
x∑
z=y

(−1)z+y
(
x− i
z − y

)(
(x− i)− (z − y)
(z − i)− (z − y)

)
Note that (−1)z+y = (−1)z−y, so we get

=
x∑
z=y

(−1)z−y
(
x− i
z − y

)(
x− i− (z − y)

y − i

)
We now let z − y = w to give us

=
x−y∑
w=0

(−1)w
(
x− i
w

)(
x− i− w
y − i

)

=
x−y∑
w=0

(−1)w
(

x− i
x− i− w

)(
x− i− w
y − i

)
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=
x−y∑
w=0

(−1)w
(
x− i
y − i

)(
x− i− (y − i)

x− i− w − (y − i)

)

=
(
x− i
y − i

) x−y∑
w=0

(−1)w
(

x− y
x− w − y

)

=
(
x− i
y − i

) x−y∑
w=0

(−1)w
(
x− y
w

)
We now let x− y = v so we get

rx,i,y,j =
(
x− i
y − i

) v∑
w=0

(−1)w
(
v

w

)
= 0

Which confirms Case II.

Case III: If x 6= y ∧ i 6= j then rx,i,y,j = 0

We know that y ≤ z ≤ x and j ≤ k ≤ i, so we have that

rx,i,y,j =
x∑
z=y

i∑
k=j

(−1)k+j+z+y
(
x− k
z − k

)(
i

k

)(
z − k
z − y

)(
k

j

)

Note that (−1)k+j+z+y = (−1)k−j(−1)z−y giving us

=
x∑
z=y

i∑
k=j

(−1)k−j(−1)z−y
(
i

k

)(
k

j

)(
x− k
z − k

)(
z − k
z − y

)

=
x∑
z=y

i∑
k=j

(−1)k−j(−1)z−y
(
i

j

)(
i− j
k − j

)(
x− k
z − k

)(
z − k
z − y

)
Let l = k − j and s = i− j giving us

=
(
i

j

) x∑
z=y

s∑
l=0

(−1)z−y(−1)l
(
s

l

)(
x− l − j
z − l − j

)(
z − l − j
z − y

)
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Now let w = z − y

=
(
i

j

) x−y∑
w=0

(−1)w
s∑
l=0

(−1)l
(
s

l

)(
x− l − j

w + y − l − j

)(
w + y − l − j

w

)
Let v = x− y

=
(
i

j

) v∑
w=0

(−1)w
s∑
l=0

(−1)l
(
s

l

)(
v + y − l − j
w + y − l − j

)(
w + y − l − j
y − l − j

)

=
(
i

j

) v∑
w=0

(−1)w
s∑
l=0

(−1)l
(
s

l

)(
v + y − l − j
y − l − j

)(
v + (y − l − j)− (y − l − j)
w + (y − l − j)− (y − l − j)

)

=
(
i

j

) v∑
w=0

(−1)w
s∑
l=0

(−1)l
(
s

l

)(
v + y − l − j

v

)(
v

w

)

=
(
i

j

)( v∑
w=0

(−1)w
(
v

w

))( s∑
l=0

(−1)l
(
s

l

)(
v + y − l − j

v

))

= 0

Confirming Case III. Recall that if x < y ∨ i < j then we have
rx,i,y,j = 0. So we have that whenever x 6= y∨ i 6= i is true, rx,i,y,j = 0.

So when x = y ∧ i = j we have rx,i,y,j = 1, and when x 6= y ∨ i 6= j
we have rx,i,y,j = 0. Recall that we let (rx,i,y,j) = Pn,2,1 · Qn,2,1. So
this shows that Pn,2,1 ·Qn,2,1 = I.

We have shown:

• Pn,2,1 ·Qn,2,1 = I

• An,2,1 · Pn,2,1 = Pn,2,1 · Jn,2,1
• Our formula for Jn,2,1 creates the Jordan Normal Form of An,2,1

since it makes a matrix that satisfies the requirements of being
a Jordan Normal Form and every matrix has a unique Jordan
Normal Form up to block rearrangement.

Which tells us that our formulas are correct for these matrices such
that An,2,1 = Pn,2,1 · Jn,2,1 ·Qn,2,1.
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3.3 Computing (An,2,1)
t

Now that we have a definite, closed formula for both Pn,2,1 and (Pn,2,1)−1

in the formula An,2,1 = Pn,2,1 · Jn,2,1 · (Pn,2,1)−1, we can look at the
probability of collecting c complete sets after time t . Since An,2,1
is just the probability of transitioning from one state to another, we
need to look at the matrix (An,2,1)t = Pn,2,1 · (Jn,2,1)t · (Pn,2,1)−1 to
find our probability. The desired entry will occur in the upper right
corner, as we want to transition from the first state to the last state
in t tries. However, we still need a closed formula for (Jn,2,1)t in terms
of our x, i, y, j indexing.

Proposition 3. If (Jn,2,1)x,i,y,j =
(
x−y
y−x
)(

1
i−j
)(

n−x
1−(i−j)

)
, then we have

((Jn,2,1)t)x,i,y,j =
(
x− y
y − x

)(
t

i− j

)
(n− x)t−(i−j)

Proof. It’s clear that we can consider each Jordan block seperately in
our exponentiation of Jn,2,1. Thus the term

(
x−y
y−x
)

remains to ensure
only blocks on the main diagonal contain non-zero entries. Next, a
well known formula for taking a Jordan block to a power basically
gives the terms of (λ+1)t, starting on each entry of the main diagonal
with the highest power of λ and going right, stopping at the end of the
Jordan block. This is of course the terms of the binomial expansion of
degree t, and the power of each must be i−j by our indexing. Finally,
the eigenvalue is given as n−x. Thus we have the above formula.

With this formula, we can now find a better formula for the upper-
right corner entry of (An,2,1)t, using Pn,2,1 · (Jn,2,1)t · (Pn,2,1)−1.

Theorem 2. The probability of collecting 2 complete sets of n cards
taken 1 at a time after time t is

n∑
z=0

(−1)z
z∑
l=0

(
n!

(z−l)!(n−z)!
(
t
l

)
(n− z)t−l

nt

)

Proof. We will associate Pn,2,1 and (Jn,2,1)t first, then multiply the
result by (Pn,2,1)−1. Further we will limit our look to only the upper
right entry of Pn,2,1 · (Jn,2,1)t · (Pn,2,1)−1, so we need only take the top
row of Pn,2,1 times every column of (Jn,2,1)t, and then the top row
of Pn,2,1 · (Jn,2,1)t times the right-most column of (Pn,2,1)−1. By our
x, i, y, j indexing this is
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n∑
z=0

z∑
k=0

[
n∑

w=0

(
w∑
l=0

(Pn,2,1)
n,n,w,l

((Jn,2,1)t)
w,l,z,k

)
((Pn,2,1)−1)

z,k,0,0

]

However, if w 6= z, ((Jn,2,1)t)
w,l,z,k

= 0, so this reduces to

n∑
z=0

z∑
k=0

[
z∑
l=0

(
(Pn,2,1)

n,n,z,l
· ((Jn,2,1)t)

z,l,z,k

)
((Pn,2,1)−1)

z,k,0,0

]
We now plug in all of our formulas to obtain

n∑
z=0

z∑
k=0

[
z∑
l=0

(
(l!)
(
n− l
z − l

)(
n

l

)(
t

l − k

)
(n− z)t−(l−k)

)
(−1)z+k

(
z−k
z

)
k!

]
.

We know that k ≥ 0, so we will have
(
z−k
z

)
= 0 if k > 0. So k = 0

is the only value of k that gives a non-zero term in the outer sum. So
a final reduction gives

n∑
z=0

(−1)z
z∑
l=0

(
n!

(z − l)!(n− z)!

(
t

l

)
(n− z)t−l

)
Finally, to create An,c,p, we multiplied the original transition ma-

trix by
(
n
p

)
, so we need to divide our final result by nt to get the final

probability.

4 Further Work and Conjectures

Following our work from the n, 2, 1 case, we attempted to find similar
relations and patterns for higher c. However, once c is greater than 2,
the eigenspaces begin splitting up and become multidimensional. Our
program can solve for the P with multidimensional eigenspaces, but
the patterns within have proven too difficult to recreate. However, we
have conjectures about the Jordan Normal Form for n, 3, 1 and n, 4, 1.
This preliminary conjecture will help set up those ideas.

Conjecture 1. For each eigenspace in Jn,c,1, there exists an eigenspace
of the same dimension with the same block sizes, with an eigenvalue
one above the original, in Jn+1,c,1.
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So for n, c, 1, increasing n by 1 will send all of the eigenspaces to
the same eigenspace in n + 1, c, 1, with the eigenvalue increased by
1. Naturally there will also be an additional eigenspace added for
the 0 eigenvalue. As the eigenspaces can then be defined recursively,
the following conjectures will only describe the new eigenspace, for
eigenvalue 0, given a certain n.

Conjecture 2. For Jn,3,1, the eigenspace over eigenvalue 0 contains
blocks of size 2n+ 1, 2n− 3, 2n− 7, . . ..

Conjecture 3. For J0,4,1, the eigenspace over eigenvalue 0 contains
1 block of size 1. For Jn,4,1, n > 0, the eigenspace over eigenvalue 0
contains all blocks from the 0 eigenspace of Jn−1,4,1, except each block
is 3 sizes larger, along with blocks of size n+ 1, n− 3, n− 7, . . ., with
the exception that a block of size 2 will never be created.

The following table shows some block sizes for the 0 eigenspace
over certain n and c, computionally determined:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
c = 1 1 1 1 1 1 1
c = 2 1 2 3 4 5 6
c = 3 1 3 5, 1 7, 3 9, 5, 1 11, 7,

3
c = 4 1 4 7, 3 10, 6,

4
13, 9,
7, 5, 1

16,
12,
10, 8,
6, 4

c = 5 1 5 9, 5, 1 13, 9,
7, 5, 1

17,
13,
11, 9,
9, 5,
5, 1

21,
17,
15,
13,
13,
11, 9,
9, 7,
5, 5,
1

Conjecture 4. The block sizes for the 0 eigenspace of Jn,c,1 are the
same as the block sizes for the 0 eigenspace of Jc−1,n+1,1.
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